Modulus of continuity estimates for fully nonlinear parabolic equations

نویسندگان

چکیده

We prove that the moduli of continuity viscosity solutions to fully nonlinear parabolic partial differential equations are subsolutions suitable one space variable. As applications, we obtain sharp Lipschitz bounds and gradient estimates for with bounded initial data. This work extends multiple results Andrews Clutterbuck quasilinear equations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Estimates for Fully Nonlinear Parabolic Equations on Riemannian Manifolds

In this paper we present some new ideas to derive a priori second order estiamtes for a wide class of fully nonlinear parabolic equations. Our methods, which produce new existence results for the initial-boundary value problems in R n , are powerful enough to work in general Riemannian manifolds. Mathematical Subject Classification (2010): 35K10, 35K55, 58J35, 35B45.

متن کامل

Introduction to fully nonlinear parabolic equations

These notes contain a short exposition of selected results about parabolic equations: Schauder estimates for linear parabolic equations with Hölder coefficients, some existence, uniqueness and regularity results for viscosity solutions of fully nonlinear parabolic equations (including degenerate ones), the Harnack inequality for fully nonlinear uniformly parabolic equations. MSC. 35K55, 35D40, ...

متن کامل

Maximum Norm Error Estimates for Difference Schemes for Fully Nonlinear Parabolic Equations

This article establishes error bounds for finite difference schemes for fully nonlinear parabolic Partial Differential Equations (PDEs). For classical solutions the global error is bounded by a known constant times the truncation error of the exact solution. As a corollary, this gives a convergence rate of 1 or 2 for first or second order accurate schemes, respectively. Our results also apply f...

متن کامل

Continuous Dependence Estimates for Viscosity Solutions of Fully Nonlinear Degenerate Parabolic Equations

Using the maximum principle for semicontinuous functions (Differential Integral Equations 3 (1990), 1001–1014; Bull. Amer. Math. Soc. (N.S) 27 (1992), 1–67), we establish a general ‘‘continuous dependence on the nonlinearities’’ estimate for viscosity solutions of fully nonlinear degenerate parabolic equations with timeand space-dependent nonlinearities. Our result generalizes a result by Souga...

متن کامل

Convergence of Rothe’s Method for Fully Nonlinear Parabolic Equations

Convergence of Rothe’s method for the fully nonlinear parabolic equation ut +F (D 2u,Du, u, x, t) = 0 is considered under some continuity assumptions on F. We show that the Rothe solutions are Lipschitz in time, and they solve the equation in the viscosity sense. As an immediate corollary we get Lipschitz behavior in time of the viscosity solutions of our equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Calculus of Variations and Partial Differential Equations

سال: 2021

ISSN: ['0944-2669', '1432-0835']

DOI: https://doi.org/10.1007/s00526-021-02056-9